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There are instances in mechanics when the stability of certain motions 
of a mechanical system can be significantly improved by application of 
external time-varying forces, while some normally unstable motions can 
even be completely stabilized. An example is a pendulum with an oscillat- 
ing support. In this case the stability of the lower position of equi- 
librium is considerably increased with respect to external disturbances, 
while for certain conditions the upper position of the pendulum can be- 
come stable [l I. On the basis of this principle accelerators with rigid 
focusing are constructed which increase the stability of orbital motions 
of charged particles [ 2 1. 

It will be shown below that the stability of a rapidly rotating gyro- 
scope can be increased by an analogous method. 

The rotation of a heavy symmetrical gyroscope with respect to its 
pole can be described by a Hamiltonian of the following form: 
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Here I,, I are the principal moments of inertia of the gyroscope 
relative to the pole, 1 is the distance from the center of masses to the 
pole. 

It is known that the natural oscillation of the gyroscope will be 
stable if the coefficient of gyroscopic stability 
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is bounded in the region 1 >, u,, >, 0, and also that the higher uq the 
more stable will be the natural oscillation with respect to external dis- 
turbances [ 3 1. 

It can be seen from Formula (2) that for the highest stability of the 
gyroscope it is necessary to make the quantity IYg1/132m32 as small as 
possible. Should this possibility be exhausted, further increase in 
stability can be obtained by vibration of the pole. 

Thus, let the pole vertical vibration be prescribed by x0 = F(t), 
where we will consider the function F(t) to be almost periodic, which 
can be expressed in the form of a finite sum of periodic functions with 
non-coincident periods: 

Let us consider the motion of a gyroscope relative to the system of 
coordinates referred to its pole. However, because of vibration this 
system will not be inertial, and it is therefore necessary 
potential of inertia forces to the Hamiltonian, which will 
the form 

Let o be the highest of the frequencies c+. Introducing 
time r = ot, the HamiLtonian now becomes 

to add the 
then be of 

(3) 

nondimensional 

H’ = 8 [HQ - Mid cos Q 21 2 x,?ay,n2 exp (ix,nt) 8 =I i, x, = % < 1 ) (4) 
Y nco 

The exact solution of Hamilton’s equations stemming from (4) is im- 
possible. It is therefore necessary to use an approximate method which 
consists of the following [ 4,s 1. 

With the aid of function S(q, P; r) we change the variables p, p to 
the variables P, Q, assuming 

p = as i 34, Q = as i c3P 

The Hamiltonian 8. in the new variables will be related to the 
Hamiltonian B in the original variables by 

seeking S such that the Hamiltonian In the new variables be explicitly 
independent of time. the equality (8) then transforms into an equation 
for determination of the function S. We have 
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We seek the solution of Equation (6) in the form of the series 

s = so A FSI + @S? (7) 

Here S,, = Pq is the identity transformation. Substituting (7) into 
(6), expanding in powers of e and equating the coefficients of equal 
powers of 6, we obtain the following chain of equations for successive 
approximations: 

Since H is an almost periodic function of T, i.e. 

the solution of (8) will be 

Substituting the result of the first approximation into the equation 
of second approximation (9)) one can analogously find S2 and H,* etc., 
as series in powers of E. 

Applying this method to the Hamiltonian (4), in the third approxima- 
tion we will obtain 

The original variables p +J P4a PO; $. 6 0 are related to the new 
ones by the following formulas: 
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For further investigations it is convenient to change from the 
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~emiltonian form of equations to the Lagrangean form, since the initial 
conditions are formulated for the coordinates and the velocities. To the 
Hamiltonian (10) there is a corresponding Lagrangean 

L = i Is [‘k cos Q $ &]Q + i I [$ sin2 Q + Qa] - Mgl cos Q - G sin* Q 

Let us investigate the stability of the gyroscope motion with the 
initial conditions 

a, = ‘PO = 0, Yp, = 90 = 0, Q. = flo = 0 

a, = cc;, = 03, I$, = $0 = 0, cj, = i, = 0 
(12) 

Here o3 is the natural frequency of rotation; also Q0 = 8, = 0, 6, = 

i0 = 0 are satisfied in any case for this approximation. 

The Lagrange equations for the three Euler coordinates are 

8L 
7 = const, 
atI, 

‘k cos Q + 6 = 03 = const ($3) 

Z+ = const 
ao, 

t 1303 CDS Q + I’@ sin” Q = al = const (14) 
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Further 

a=~cosQ,+$,,2eginzQO~!!$% 

Introducing the notation 

cI 
0 

= 1 ‘303 

2 1 t 

and eliminating 4 from Equation (15) we obtain 

Q + 4a02 ‘2 (I ,FQ”” + 2p cos Q t 7 sin2 Q = 2p 

Let US introduce P = cos Q; then Equation (16) becomes 

u2 = 28 (1 - u2) (l - U) - 4a02 (1 - u)~ --‘q (1 - u2j2= Pa (u) ($7) 

As in the case of no vibration, the Lagrange equation (16) has the 
following solution: 

cp = @3& YF = 0, Q=O or u=f 

This solution corresponds to the natural rotation.C spin 1 of the 
gyroscope without nutation and precession, i.e. with the retention of 
the given direction of rotation, this form of rotation being widely 
utilized.in technology. This motion must be stable with respect to the 
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external disturbances. 

The solution a = 1, u = 0 will be stable if 

The value of the second derivative may be taken as the measure of 

stability. Equation (18) gives 

if the so-called coefficient of gyroscopic stability is introduced 
[o:: P. 152 1 which is compared with that of the gyroscope without vibra- 
tion [ 2 1 , then it will be clear that u > a0 for any condition, i.e. the 
vibrations of the stationary point of the gyroscope (pole) increase its 
resistance to external disturbances. 

We state without proof that the smaller the amplitude 
the higher its frequency the greater is effectiveness of 

increasing stability. 
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